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Section 1: Motivation.
(from the morphology viewpoint)
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Motivation: Are the teeth from the same species?

Figure 1: We have four collections of teeth =⇒ four groups of shapes.

Question: Are the four collections of teeth from the same species?
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Toy example: Are the shapes from the same
distribution?

P(1) and P(2) are shape-generating distributions, i.e., they generate
“shape-valued” random variables.

100 blue shapes
iid∼ P(1); 100 pink shapes

iid∼ P(2);

Question: P(1) = P(2)?
To be equal, or not to be, that is the hypothesis testing question.
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Section 2: Statistical Methodology.
(not mathematically rigorous)
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Smooth Euler1 Characteristic Transform (SECT)

Each shape is denoted by K.
We assume K ⊂ B(0, R) = {x ∈ Rd : ∥x∥ < R} which denotes a
closed ball centered at the origin with a prespecified radius R > 0.
For each direction ν ∈ Sd−1 = {x ∈ Rd : ∥x∥ = 1}, we define a
collection of sublevel sets of K by

Kν
t

def
= {x ∈ K|x · ν ≤ t−R}, for all t ∈ [0, T ], where T = 2R.

1‘oi-ler’
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Smooth Euler Characteristic Transform (SECT)

We have the Euler characteristic transform (ECT)2 of shape K

ECT(K) : Sd−1 × [0, T ] → Z,
(ν, t) 7→ χ(Kν

t ),

χ(Kν
t )

def
= the Euler characteristic of Kν

t .

E.g., Euler characteristic (a mesh) = #vertice−#edges+#faces.

The smooth Euler characteristic transform (SECT)3 is defined as

SECT(K) : Sd−1 × [0, T ] → R, (ν, t) 7→ SECT(K)(ν; t),

where SECT(K)(ν; t)
def
=

∫ t

0
χ(Kν

τ ) dτ − t

T

∫ T

0
χ(Kν

τ ) dτ.

2K. Turner, S. Mukherjee, and D. M. Boyer. Persistent homology transform for
modeling shapes and surfaces. Information and Inference: A Journal of the IMA,
3(4):310–344, 2014b.

3L. Crawford, A. Monod, A. X. Chen, S. Mukherjee, and R. Rabadan. Predicting
clinical outcomes in glioblastoma: an application of topological and functional data
analysis. Journal of the American Statistical Association, 115 (531):1139–1150, 2020.
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Smooth Euler Characteristic Transform (SECT)

Shape → scalar field on Sd−1 × [0, T ]

Scalar field (ν, t) 7→ SECT(K)(θ; t), where ν = (cos θ, sin θ) ∈ S1.

Shape analysis → manifold learning4

Imaging data → functional data
4Kun Meng and Ani Eloyan. Principal manifold estimation via model complexity

selection. Journal of the Royal Statistical Society. Series B, Statistical Methodology,
83(2):369, 2021.
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Smooth Euler Characteristic Transform (SECT)

The shape-to-SECT map is invertible5, which was proved using
o-minimal structures6 and the Schapira’s inversion formula7.

Therefore, SECT(K) preserves all the information of the shape K.

Contribution of this project: If the shape K is random,

(ν, t) 7→ SECT(K)(ν; t) is a random field indexed by Sd−1 × [0, T ];

for each direction ν, the function t 7→ SECT(K)(ν; t) is a
stochastic process indexed by t ∈ [0, T ].

5R. Ghrist, R. Levanger, and H. Mai. Persistent homology and Euler integral
transforms. Journal of Applied and Computational topology, 2, pages55–60 (2018).

6Lou van den Dries. Tame Topology and O-minimal Structures. London Mathematical
Society Lecture Note Series. Cambridge University Press, 1998.

7P. Schapira. Tomography of constructible functions. In Applied Algebra, Algebraic
Algorithms and Error-Correcting Codes: 11th International Symposium, AAECC-11 Paris,
France, July 17–22, 1995 Proceedings 11, pages 427–435. Springer, 1995
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Hypothesis Testing: To be equal or not to be?

Suppose we have two underlying distributions P(1) and P(2)

generating random shapes.

We want to test “ P(1) = P(2).”

Then, we have two collections of mean functions

m(j)
ν (t) = E(j){SECT(·)(ν; t)} =

∫
{SECT(K)(ν; t)} P(j)(dK),

for j ∈ {1, 2}, t ∈ [0, T ] and ν ∈ Sd−1.

We test the following weaker form using the first moments

H0 : m
(1)
ν (t) = m(2)

ν (t) for all (ν, t) ∈ Sd−1 × [0, T ]

vs. H1 : m
(1)
ν (t) ̸= m(2)

ν (t) for some (ν, t).

One may be only concerned with the discrepancy between means.
Or, from another viewpoint, rejecting H0 implies P(1) ̸= P(2).
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Hypothesis Testing

The following involves infinitely many directions ν ∈ Sd−1

H0 : m
(1)
ν (t) = m(2)

ν (t) for all (ν, t) ∈ Sd−1 × [0, T ]

vs. H1 : m
(1)
ν (t) ̸= m(2)

ν (t) for some (ν, t).n

Considering all the directions would induce an infeasible
multiple-comparison problem.

We only investigate the following “distinguishing direction”

ν∗
def
= arg max

ν∈Sd−1

{
sup

t∈[0,T ]

∣∣∣m(1)
ν (t)−m(2)

ν (t)
∣∣∣}

= arg max
ν∈Sd−1

∥∥∥m(1)
ν −m(2)

ν

∥∥∥
C([0,T ])

.

One may rigorously show that it suffices to focus on direction ν∗.
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Covariance Kernels

We focus on one distinguishing direction ν∗.

Associated with distribution P(j), for j ∈ {1, 2}, the stochastic

process SECT(K)(ν∗, ·) has a covariance function κ
(j)
ν∗ (s, t).

Assumption:8 κ
(1)
ν∗ (s, t) = κ

(2)
ν∗ (s, t)

def
= κ(s, t).

Under some topological conditions, the following integral operator
is a Hilbert-Schmidt (hence, compact) operator on L2(0, T ),

f 7→
∫ T

0
κ(s, ·)f(s) ds,

and it has the eigenvalues {λl}∞l=1 and orthonormal eigenfunctions
{ϕl}∞l=1.

8This assumption corresponds to the null hypothesis P(1) = P(2). With a permutation
trick, our statistical method is robust to the violation of the assumption.
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Karhunen–Loève expansion

We have the following Karhunen–Loève expansion

SECT(K)(ν∗; t) = m
(j)
ν∗ (t) +

∞∑
l=1

√
λl · Zl(K) · ϕl(t),

where Zl(K) :=
1√
λl

∫ T

0

{
SECT(K)(ν∗; t)−m

(j)
ν∗ (t)

}
· ϕl(t) dt

The convergence of
∑

is in the L∞
t L2

K(dt,P(j)(dK)) topology.

Zl is of mean 0 and variance 1, and they are mutually uncorrelated
according to P(j) across l = 1, 2, ....
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Hypothesis Testing

Data: shapes {K(1)
i }ni=1

iid∼ P(1) and {K(2)
i }ni=1

iid∼ P(2).
The Karhunen–Loève expansions provide the following

Xi(t)
def
= SECT(K

(1)
i )(ν∗; t)− SECT(K

(2)
i )(ν∗; t)

=
{
m

(1)
ν∗ (t)−m

(2)
ν∗ (t)

}
+

∞∑
l=1

√
2λl ·

(
Zl(K

(1)
i )− Zl(K

(2)
i )√

2

)
· ϕl(t).

Xi(t) is a stochastic process associated with P(1) ⊗ P(2).
We further define the random variables ξl,i as follows

ξl,i
def
=

1√
2λl

·
∫ T

0
Xi(t)ϕl(t)dt = θl +

Z
(1)
l,i − Z

(2)
l,i√

2


where θl =

1√
2λl

∫ T

0

{
m

(1)
ν∗ (t)−m

(2)
ν∗ (t)

}
ϕl(t)dt.
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Hypothesis Testing

ξl,i
def
=

1√
2λl

·
∫ T

0
Xi(t)ϕl(t)dt = θl +

Z
(1)
l,i − Z

(2)
l,i√

2


where θl =

1√
2λl

∫ T

0

{
m

(1)
ν∗ (t)−m

(2)
ν∗ (t)

}
ϕl(t)dt.

m
(1)
ν∗ (t) = m

(2)
ν∗ (t) for all t ⇐⇒ θ1 = θ2 = · · · = 0.

ξl,i are of mean θl and variance 1.

ξ1,i, ξ2,i, . . . , ξl,i, . . . are mutually uncorrelated (across index l).
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Hypothesis Testing

We test the following approximate hypothesis

Ĥ0 : θ1 = θ2 = · · · = θL = 0,

where L
def
= min

{
l ∈ N

∣∣∣∣ ∑l
l′=1 λl′∑∞
l′′=1

λl′′
> 0.95

}
.

Ĥ0 ⇐⇒ ξ1,i, . . . , ξL,i are of mean zero.

We implement the following asymptotic χ2-test (Algorithm 1)

L∑
l=1

(
1√
n

n∑
i=1

ξl,i

)2

> χ2
L,1−α.

Highly-nonparametric hypothesis testing
=⇒ normal distribution-based hypothesis testing.
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Permutation Test

Recall our assumption9 κ
(1)
ν∗ (s, t) = κ

(2)
ν∗ (s, t)

def
= κ(s, t).

Violation (in the numerical sense) of the assumption will induce
type-I error inflation.

To reduce inflation, we need a permutation trick.

Permutation test (Algorithm 2): We first shuffle (permute) the

group labels j ∈ {1, 2} of shapes {K(j)
i }ni=1; then, we apply

Algorithm 1 to the permuted shapes.

That is, Algorithm 2 = permutation + Algorithm 1.

9This assumption corresponds to the null hypothesis P(1) = P(2).
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Simulations

For each ε ∈ [0, 0.1], the distribution P(ε) generates the following
shapes

K
(ε)
i

def
=

{
x ∈ R2

∣∣∣∣∣ inf
y∈S(ε)

i

∥x− y∥ ≤ 1

5

}
, where

S
(ε)
i =

{(
2

5
+ a1,i · cos t, b1,i · sin t

) ∣∣∣∣∣ 1− ε

5
π ≤ t ≤ 9 + ε

5
π

}
⋃{(

−2

5
+ a2,i · cos t, b2,i · sin t

) ∣∣∣∣∣ 6π5 ≤ t ≤ 14π

5

}
,

where a1,i, a2,i, b1,i, b2,i
i.i.d.∼ N(0, 0.052).

We test the following hypotheses

H0 : m
(0)
ν (t) = m(ε)

ν (t) for all (ν, t) ∈ Sd−1 × [0, T ],

vs. H1 : m
(0)
ν (t) ̸= m(ε)

ν (t) for some (ν, t).
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ε = 0.075

100 blue shapes
iid∼ P(0);

100 pink shapes
iid∼ P(ε).

ε measures the discrepancy between the null hypothesis and the true
shape-generating mechanism.

H0 : m
(0)
ν (t) = m(ε)

ν (t) for all (ν, t) ∈ Sd−1 × [0, T ],

vs. H1 : m
(0)
ν (t) ̸= m(ε)

ν (t) for some (ν, t),
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Simulations (α = 0.05)

H0 : m
(0)
ν (t) = m(ε)

ν (t) for all (ν, t) ∈ Sd−1 × [0, T ],

vs. H1 : m
(0)
ν (t) ̸= m(ε)

ν (t) for some (ν, t).

ε measures the discrepancy between the null hypothesis and the true
shape-generating mechanism.
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Section 3: Applications
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Data Analysis I: Silhouette Database

Table 1: P-values of Algorithms 1 and 2 for the silhouette database.

Algorithm 1 Algorithm 2

Apples vs. Hearts < 0.01 < 0.01

Apples vs. Children < 0.01 < 0.01

Hearts vs. Children < 0.01 < 0.01

Apples vs. Apples 0.26 (0.23) 0.46 (0.27)

Hearts vs. Hearts 0.17 (0.16) 0.47 (0.29)

Children vs. Children 0.39 (0.28) 0.49 (0.30)
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Data Analysis II: Teeth of Primates
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Data Analysis II: Teeth of Primates

Table 2: P-values of Algorithms 1 and 2 for the data set of mandibular molars.

Algorithm 1 Algorithm 2

Tarsius vs. Microcebus < 10−3 < 10−3

Tarsius vs. Mirza < 10−3 < 10−3

Tarsius vs. Saimiri < 10−3 < 10−3

Microcebus vs. Mirza < 10−3 0.009

Microcebus vs. Saimiri < 10−3 < 10−3

Mirza vs. Saimiri < 10−3 < 10−3

Tarsius vs. Tarsius 0.206 (0.195) 0.519 (0.274)
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Section 4: Mathematical Foundations
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Polish Space-valued Random Variables

Ω := the collection of shapes in Rd satisfying some topological
conditions10. They are the shapes of interest.

For each K ∈ Ω and fixed direction ν ∈ Sd−1, we proved that
t 7→ SECT(K)(ν, t) belongs to the Sobolev space H := H1

0 (0, T ),
i.e., SECT(K)(ν, ·) ∈ H.

(Sobolev spaces are usually implemented to show the
well-posedness of PDEs.11 By Sobolev embedding theorm,
H = H1

0 (0, T ) is a RKHS)

In addition, we proved the continuity12 of the following function

Sd−1 → H, ν 7→ SECTK(ν, ·),

that is, SECT(K) ∈ C(Sd−1;H).
10They involve too much machinery of computational topology, hence, are omitted.
11e.g., Junfeng Li and Kun Meng. Global well-posedness for the fifth order

Kadomtsev-Petviashvili II equation in three-dimensional space. Nonlinear Analysis, 130:
157-175, 2016.

12Precisely, 1/2-Hölder continuity
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Polish Space-valued Random Variables

SECT : Ω → C(Sd−1;H),

K 7→ SECT(K)

Hence, SECT(K) takes values in C(Sd−1;H), which is a separable
Banach space (hence, Polish space, suitable for probability).

We defined a metric (not a semi-metric) on Ω as follows

ρ(K1,K2)
def
= sup

ν∈Sd−1

{(∫ T

0

∣∣∣χ(Kν
1,τ )− χ(Kν

2,τ )
∣∣∣2dτ)1/2

}
.

The map SECT : Ω → C(Sd−1;H) is Borel-measurable,
hence, a random variable.

The conditions of the Karhunen–Loève expansion are satisfied.
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Conclusions

Methodology: We proposed statistical inference methods for
testing whether two collections of shapes are significantly different.

Our discussions connect the following fields: algebraic and
computational topology, probability theory and stochastic
processes, Sobolev spaces and functional analysis, statistical
inference, and morphology.

Our results have been posted on arXiv.13

Future work: We will apply similar approaches to
grayscale images of tumors14 and fMRI data15.

13Kun Meng, Jinyu Wang, Lorin Crawford, and Ani Eloyan. Randomness and
statistical inference of shapes via the smooth Euler characteristic transform. arXiv preprint
arXiv: 2204.12699 (2023). (Submitted to JASA — major revisions)

14Q. Jiang, S. Kurtek, and T. Needham. The weighted euler curve transform for shape
and image analysis. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops, pages 844–845, 2020.

15Kun Meng and Ani Eloyan. Population-level task-evoked functional connectivity via
Fourier analysis. arXiv preprint arXiv: 2102.12039 (2022).
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Thank You !
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