Randomness and Statistical Inference of Shapes via the Smooth Euler Characteristic Transform

> Kun Meng (Mike)

Division of Applied Mathematics Brown University

June 27, 2023

joint work with them

Prof. Ani Eloyan (Biostatistics@Brown)

Prof. Lorin Crawford (Microsoft & Biostatistics@Brown)

Mr. Jinyu Wang (Data Science@Brown)

3 Applications

Section 1: Motivation. (from the morphology viewpoint)

Motivation: Are the teeth from the same species?

Figure 1: We have four collections of **teeth** \implies four groups of **shapes**.

Question: Are the four collections of teeth from the same species? Kun Meng (Brown University) Shapes via SECT June 27, 2023

Toy example: Are the shapes from the same distribution?

- $\mathbb{P}^{(1)}$ and $\mathbb{P}^{(2)}$ are shape-generating distributions, i.e., they generate "shape-valued" random variables.
- 100 blue shapes $\stackrel{iid}{\sim} \mathbb{P}^{(1)}$; 100 pink shapes $\stackrel{iid}{\sim} \mathbb{P}^{(2)}$;

Question: $\mathbb{P}^{(1)} = \mathbb{P}^{(2)}$?

To be equal, or not to be, that is the hypothesis testing question.

Section 2: Statistical Methodology. (not mathematically rigorous)

Smooth $Euler^1$ Characteristic Transform (SECT)

- Each shape is denoted by K.
- We assume $K \subset B(0, R) = \{x \in \mathbb{R}^d : ||x|| < R\}$ which denotes a closed ball centered at the origin with a prespecified radius R > 0.
- For each direction $\nu \in \mathbb{S}^{d-1} = \{x \in \mathbb{R}^d : ||x|| = 1\}$, we define a collection of sublevel sets of K by

 $K_t^{\nu} \stackrel{\text{def}}{=} \{x \in K | x \cdot \nu \leq t - R\}, \text{ for all } t \in [0, T], \text{ where } T = 2R.$

¹'oi-ler'

Kun Meng (Brown University)

Smooth Euler Characteristic Transform (SECT)

• We have the Euler characteristic transform $(ECT)^2$ of shape K

ECT(K):
$$\mathbb{S}^{d-1} \times [0,T] \to \mathbb{Z},$$

 $(\nu, t) \mapsto \chi(\underline{K}_t^{\nu}),$

 $\chi(K_t^{\nu}) \stackrel{\text{def}}{=}$ the Euler characteristic of K_t^{ν} .

E.g., Euler characteristic (a mesh) = #vertice-#edges+#faces. • The smooth Euler characteristic transform (SECT)³ is defined as SECT(K): $\mathbb{S}^{d-1} \times [0,T] \to \mathbb{R}, \quad (\nu,t) \mapsto \text{SECT}(K)(\nu;t),$ where $\text{SECT}(K)(\nu;t) \stackrel{\text{def}}{=} \int_{0}^{t} \chi(K_{\tau}^{\nu}) d\tau - \frac{t}{T} \int_{0}^{T} \chi(K_{\tau}^{\nu}) d\tau.$

 $^2 \rm K.$ Turner, S. Mukherjee, and D. M. Boyer. Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA, 3(4):310–344, 2014b.

³L. Crawford, A. Monod, A. X. Chen, S. Mukherjee, and R. Rabadan. Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. *Journal of the American Statistical Association*, 115 (531):1139–1150, 2020.

Kun Meng (Brown University)

Smooth Euler Characteristic Transform (SECT)

Scalar field $(\nu, t) \mapsto \text{SECT}(K)(\theta; t)$, where $\nu = (\cos \theta, \sin \theta) \in \mathbb{S}^1$.

Shape analysis \rightarrow manifold learning⁴ Imaging data \rightarrow functional data

⁴Kun Meng and Ani Eloyan. Principal manifold estimation via model complexity selection. Journal of the Royal Statistical Society. Series B, Statistical Methodology, 83(2):369, 2021.

Kun Meng (Brown University)

Smooth Euler Characteristic Transform (SECT)

- The shape-to-SECT map is invertible⁵, which was proved using o-minimal structures⁶ and the Schapira's inversion formula⁷.
- Therefore, SECT(K) preserves all the information of the shape K.

Contribution of this project: If the shape K is random,

- $(\nu, t) \mapsto \text{SECT}(K)(\nu; t)$ is a random field indexed by $\mathbb{S}^{d-1} \times [0, T];$
- for each direction ν , the function $t \mapsto \text{SECT}(K)(\nu; t)$ is a stochastic process indexed by $t \in [0, T]$.

⁵R. Ghrist, R. Levanger, and H. Mai. Persistent homology and Euler integral transforms. *Journal of Applied and Computational topology*, 2, pages55–60 (2018).

⁶Lou van den Dries. Tame Topology and O-minimal Structures. London Mathematical Society Lecture Note Series. Cambridge University Press, 1998.

⁷P. Schapira. Tomography of constructible functions. In Applied Algebra, Algebraic Algorithms and Error-Correcting Codes: 11th International Symposium, AAECC-11 Paris, France, July 17–22, 1995 Proceedings 11, pages 427–435. Springer, 1995

Kun Meng (Brown University)

Hypothesis Testing: To be equal or not to be?

- Suppose we have two underlying distributions $\mathbb{P}^{(1)}$ and $\mathbb{P}^{(2)}$ generating random shapes.
- We want to test " $\mathbb{P}^{(1)} = \mathbb{P}^{(2)}$."
- Then, we have two collections of mean functions

$$m_{\nu}^{(j)}(t) = \mathbb{E}^{(j)} \{ \operatorname{SECT}(\cdot)(\nu; t) \} = \int \{ \operatorname{SECT}(K)(\nu; t) \} \mathbb{P}^{(j)}(dK),$$

for
$$j \in \{1, 2\}, t \in [0, T]$$
 and $\nu \in \mathbb{S}^{d-1}$.

• We test the following weaker form using the first moments

$$H_0: m_{\nu}^{(1)}(t) = m_{\nu}^{(2)}(t) \text{ for all } (\nu, t) \in \mathbb{S}^{d-1} \times [0, T]$$

vs. $H_1: m_{\nu}^{(1)}(t) \neq m_{\nu}^{(2)}(t) \text{ for some } (\nu, t).$

• One may be only concerned with the discrepancy between means. Or, from another viewpoint, rejecting H_0 implies $\mathbb{P}^{(1)} \neq \mathbb{P}^{(2)}$. • The following involves infinitely many directions $\nu \in \mathbb{S}^{d-1}$

$$H_0: m_{\nu}^{(1)}(t) = m_{\nu}^{(2)}(t) \text{ for all } (\nu, t) \in \mathbb{S}^{d-1} \times [0, T]$$

vs. $H_1: m_{\nu}^{(1)}(t) \neq m_{\nu}^{(2)}(t) \text{ for some } (\nu, t).n$

- Considering all the directions would induce an infeasible multiple-comparison problem.
- We only investigate the following "distinguishing direction"

$$\nu^* \stackrel{\text{def}}{=} \arg \max_{\nu \in \mathbb{S}^{d-1}} \left\{ \sup_{t \in [0,T]} \left| m_{\nu}^{(1)}(t) - m_{\nu}^{(2)}(t) \right| \right\}$$
$$= \arg \max_{\nu \in \mathbb{S}^{d-1}} \left\| m_{\nu}^{(1)} - m_{\nu}^{(2)} \right\|_{C([0,T])}.$$

• One may rigorously show that it suffices to focus on direction ν^* .

- We focus on one distinguishing direction ν^* .
- Associated with distribution $\mathbb{P}^{(j)}$, for $j \in \{1, 2\}$, the stochastic process $\text{SECT}(K)(\nu^*, \cdot)$ has a covariance function $\kappa_{\nu^*}^{(j)}(s, t)$.
- Assumption:⁸ $\kappa_{\nu^*}^{(1)}(s,t) = \kappa_{\nu^*}^{(2)}(s,t) \stackrel{\text{def}}{=} \kappa(s,t).$
- Under some topological conditions, the following integral operator is a Hilbert-Schmidt (hence, compact) operator on $L^2(0,T)$,

$$f\mapsto \int_0^T\kappa(s,\cdot)f(s)\,ds,$$

and it has the eigenvalues $\{\lambda_l\}_{l=1}^{\infty}$ and orthonormal eigenfunctions $\{\phi_l\}_{l=1}^{\infty}$.

Kun Meng (Brown University)

⁸This assumption corresponds to the null hypothesis $\mathbb{P}^{(1)} = \mathbb{P}^{(2)}$. With a permutation trick, our statistical method is robust to the violation of the assumption.

• We have the following Karhunen–Loève expansion

$$\operatorname{SECT}(K)(\nu^*;t) = m_{\nu^*}^{(j)}(t) + \sum_{l=1}^{\infty} \sqrt{\lambda_l} \cdot Z_l(K) \cdot \phi_l(t),$$

where $Z_l(K) := \frac{1}{\sqrt{\lambda_l}} \int_0^T \left\{ \operatorname{SECT}(K)(\nu^*;t) - m_{\nu^*}^{(j)}(t) \right\} \cdot \phi_l(t) dt$

- The convergence of \sum is in the $L^{\infty}_{t}L^{2}_{K}(dt, \mathbb{P}^{(j)}(dK))$ topology.
- Z_l is of mean 0 and variance 1, and they are mutually uncorrelated according to $\mathbb{P}^{(j)}$ across l = 1, 2, ...

Hypothesis Testing

- Data: shapes $\{K_i^{(1)}\}_{i=1}^n \stackrel{iid}{\sim} \mathbb{P}^{(1)}$ and $\{K_i^{(2)}\}_{i=1}^n \stackrel{iid}{\sim} \mathbb{P}^{(2)}$.
- The Karhunen–Loève expansions provide the following

$$X_{i}(t) \stackrel{\text{def}}{=} \text{SECT}(K_{i}^{(1)})(\nu^{*};t) - \text{SECT}(K_{i}^{(2)})(\nu^{*};t)$$
$$= \left\{ m_{\nu^{*}}^{(1)}(t) - m_{\nu^{*}}^{(2)}(t) \right\}$$
$$+ \sum_{l=1}^{\infty} \sqrt{2\lambda_{l}} \cdot \left(\frac{Z_{l}(K_{i}^{(1)}) - Z_{l}(K_{i}^{(2)})}{\sqrt{2}} \right) \cdot \phi_{l}(t)$$

X_i(t) is a stochastic process associated with P⁽¹⁾ ⊗ P⁽²⁾.
We further define the random variables ξ_{l,i} as follows

$$\xi_{l,i} \stackrel{\text{def}}{=} \frac{1}{\sqrt{2\lambda_l}} \cdot \int_0^T X_i(t)\phi_l(t)dt = \theta_l + \left(\frac{Z_{l,i}^{(1)} - Z_{l,i}^{(2)}}{\sqrt{2}}\right)$$

where $\theta_l = \frac{1}{\sqrt{2\lambda_l}} \int_0^T \left\{m_{\nu^*}^{(1)}(t) - m_{\nu^*}^{(2)}(t)\right\} \phi_l(t)dt.$

Hypothesis Testing

$$\xi_{l,i} \stackrel{\text{def}}{=} \frac{1}{\sqrt{2\lambda_l}} \cdot \int_0^T X_i(t)\phi_l(t)dt = \theta_l + \left(\frac{Z_{l,i}^{(1)} - Z_{l,i}^{(2)}}{\sqrt{2}}\right)$$

where $\theta_l = \frac{1}{\sqrt{2\lambda_l}} \int_0^T \left\{ m_{\nu^*}^{(1)}(t) - m_{\nu^*}^{(2)}(t) \right\} \phi_l(t)dt.$

•
$$m_{\nu^*}^{(1)}(t) = m_{\nu^*}^{(2)}(t)$$
 for all $t \iff \theta_1 = \theta_2 = \dots = 0$.

• $\xi_{l,i}$ are of mean θ_l and variance 1.

• $\xi_{1,i}, \xi_{2,i}, \ldots, \xi_{l,i}, \ldots$ are mutually uncorrelated (across index l).

Hypothesis Testing

• We test the following approximate hypothesis

$$\widehat{H_0}: \quad \theta_1 = \theta_2 = \dots = \theta_L = 0,$$

where $\underline{L} \stackrel{\text{def}}{=} \min \left\{ l \in \mathbb{N} \left| \frac{\sum_{l'=1}^l \lambda_{l'}}{\sum_{l''=1}^\infty \lambda_{l''}} > 0.95 \right\}.$

• $\widehat{H}_0 \iff \xi_{1,i}, \ldots, \xi_{L,i}$ are of mean zero.

• We implement the following asymptotic χ^2 -test (Algorithm 1)

$$\sum_{l=1}^{L} \left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \xi_{l,i} \right)^2 > \chi_{L,1-\alpha}^2.$$

• Highly-nonparametric hypothesis testing

 \implies normal distribution-based hypothesis testing.

Recall our assumption⁹ $\kappa_{\nu^*}^{(1)}(s,t) = \kappa_{\nu^*}^{(2)}(s,t) \stackrel{\text{def}}{=} \kappa(s,t).$

- Violation (in the numerical sense) of the assumption will induce type-I error inflation.
- To reduce inflation, we need a permutation trick.
- Permutation test (Algorithm 2): We first shuffle (permute) the group labels $j \in \{1, 2\}$ of shapes $\{K_i^{(j)}\}_{i=1}^n$; then, we apply Algorithm 1 to the permuted shapes.
- That is, Algorithm 2 = permutation + Algorithm 1.

⁹This assumption corresponds to the null hypothesis $\mathbb{P}^{(1)} = \mathbb{P}^{(2)}$.

Kun Meng (Brown University)

Simulations

• For each $\varepsilon \in [0, 0.1]$, the distribution $\mathbb{P}^{(\varepsilon)}$ generates the following shapes

$$K_i^{(\varepsilon)} \stackrel{\text{def}}{=} \left\{ x \in \mathbb{R}^2 \, \middle| \, \inf_{y \in S_i^{(\varepsilon)}} \|x - y\| \le \frac{1}{5} \right\}, \quad \text{where}$$

$$S_i^{(\varepsilon)} = \left\{ \left(\frac{2}{5} + a_{1,i} \cdot \cos t, b_{1,i} \cdot \sin t \right) \, \left| \, \frac{1 - \varepsilon}{5} \pi \le t \le \frac{9 + \varepsilon}{5} \pi \right\} \right.$$
$$\left. \bigcup \left\{ \left(-\frac{2}{5} + a_{2,i} \cdot \cos t, b_{2,i} \cdot \sin t \right) \, \left| \, \frac{6\pi}{5} \le t \le \frac{14\pi}{5} \right\} \right\}$$

where $a_{1,i}, a_{2,i}, b_{1,i}, b_{2,i} \stackrel{i.i.d.}{\sim} N(0, 0.05^2)$. • We test the following hypotheses

$$H_0: m_{\nu}^{(0)}(t) = m_{\nu}^{(\varepsilon)}(t) \text{ for all } (\nu, t) \in \mathbb{S}^{d-1} \times [0, T],$$

vs. $H_1: m_{\nu}^{(0)}(t) \neq m_{\nu}^{(\varepsilon)}(t) \text{ for some } (\nu, t).$

Kun Meng (Brown University)

 $\varepsilon = 0.075$

100 blue shapes $\stackrel{iid}{\sim} \mathbb{P}^{(0)}$; 100 pink shapes $\stackrel{iid}{\sim} \mathbb{P}^{(\varepsilon)}$.

 ε measures the discrepancy between the null hypothesis and the true shape-generating mechanism.

$$H_0: m_{\nu}^{(0)}(t) = m_{\nu}^{(\varepsilon)}(t) \text{ for all } (\nu, t) \in \mathbb{S}^{d-1} \times [0, T],$$

vs. $H_1: m_{\nu}^{(0)}(t) \neq m_{\nu}^{(\varepsilon)}(t) \text{ for some } (\nu, t),$

Simulations ($\alpha = 0.05$)

$$H_0: m_{\nu}^{(0)}(t) = m_{\nu}^{(\varepsilon)}(t) \text{ for all } (\nu, t) \in \mathbb{S}^{d-1} \times [0, T],$$

vs. $H_1: m_{\nu}^{(0)}(t) \neq m_{\nu}^{(\varepsilon)}(t) \text{ for some } (\nu, t).$

 ε measures the discrepancy between the null hypothesis and the true shape-generating mechanism.

Kun Meng (Brown University)

Section 3: Applications

Data Analysis I: Silhouette Database

Table 1: P-values of Algorithms 1 and 2 for the silhouette database.

	Algorithm 1	Algorithm 2
Apples vs. Hearts	< 0.01	< 0.01
Apples vs. Children	< 0.01	< 0.01
Hearts vs. Children	< 0.01	< 0.01
Apples vs. Apples	$0.26\ (0.23)$	$0.46 \ (0.27)$
Hearts vs. Hearts	$0.17\ (0.16)$	0.47~(0.29)
Children vs. Children	$0.39\ (0.28)$	$0.49\ (0.30)$

P				R			(A)	R	6
S		(7	S		A	<u> A</u>	S		R
<u>Se</u>	8		6			Ş	1	(ST)	6
â		R	S	\$	\$	\$	F	\$	
F	8	\$		8			\$		
					S				

Table 2: P-values of Algorithms 1 and 2 for the data set of mandibular molars.

	Algorithm 1	Algorithm 2
Tarsius vs. Microcebus	$< 10^{-3}$	$< 10^{-3}$
Tarsius vs. Mirza	$< 10^{-3}$	$< 10^{-3}$
Tarsius vs. Saimiri	$< 10^{-3}$	$< 10^{-3}$
Microcebus vs. Mirza	$< 10^{-3}$	0.009
Microcebus vs. Saimiri	$< 10^{-3}$	$< 10^{-3}$
Mirza vs. Saimiri	$< 10^{-3}$	$< 10^{-3}$
Tarsius vs. Tarsius	$0.206\ (0.195)$	0.519(0.274)

Section 4: Mathematical Foundations

Polish Space-valued Random Variables

- Ω := the collection of shapes in R^d satisfying some topological conditions¹⁰. They are the shapes of interest.
- For each $K \in \Omega$ and fixed direction $\nu \in \mathbb{S}^{d-1}$, we proved that $t \mapsto \operatorname{SECT}(K)(\nu, t)$ belongs to the Sobolev space $\mathcal{H} := H_0^1(0, T)$, i.e., $\operatorname{SECT}(K)(\nu, \cdot) \in \mathcal{H}$.
- (Sobolev spaces are usually implemented to show the well-posedness of PDEs.¹¹ By Sobolev embedding theorm, $\mathcal{H} = H_0^1(0, T)$ is a RKHS)
- In addition, we proved the continuity¹² of the following function

$$\mathbb{S}^{d-1} \to \mathcal{H}, \ \nu \mapsto \operatorname{SECT} K(\boldsymbol{\nu}, \cdot),$$

that is, $\operatorname{SECT}(K) \in C(\mathbb{S}^{d-1}; \mathcal{H}).$

¹⁰They involve too much machinery of computational topology, hence, are omitted.

¹¹e.g., Junfeng Li and **Kun Meng**. Global well-posedness for the fifth order Kadomtsev-Petviashvili II equation in three-dimensional space. *Nonlinear Analysis*, 130: 157-175, 2016.

 12 Precisely, 1/2-Hölder continuity

Kun Meng (Brown University)

Polish Space-valued Random Variables

SECT:
$$\Omega \to C(\mathbb{S}^{d-1}; \mathcal{H}),$$

 $K \mapsto \text{SECT}(K)$

- Hence, SECT(K) takes values in $C(\mathbb{S}^{d-1}; \mathcal{H})$, which is a separable Banach space (hence, Polish space, suitable for probability).
- We defined a metric (not a semi-metric) on Ω as follows

$$\rho(K_1, K_2) \stackrel{\text{def}}{=} \sup_{\nu \in \mathbb{S}^{d-1}} \left\{ \left(\int_0^T \left| \chi(K_{1,\tau}^{\nu}) - \chi(K_{2,\tau}^{\nu}) \right|^2 d\tau \right)^{1/2} \right\}$$

- The map SECT : $\Omega \to C(\mathbb{S}^{d-1}; \mathcal{H})$ is Borel-measurable, hence, a random variable.
- The conditions of the Karhunen–Loève expansion are satisfied.

Conclusions

- **Methodology**: We proposed statistical inference methods for testing whether two collections of shapes are significantly different.
- Our discussions connect the following fields: algebraic and computational topology, probability theory and stochastic processes, Sobolev spaces and functional analysis, statistical inference, and morphology.
- Our results have been posted on arXiv.¹³
- Future work: We will apply similar approaches to grayscale images of tumors¹⁴ and fMRI data¹⁵.

Kun Meng (Brown University)

¹³Kun Meng, Jinyu Wang, Lorin Crawford, and Ani Eloyan. Randomness and statistical inference of shapes via the smooth Euler characteristic transform. arXiv preprint arXiv: 2204.12699 (2023). (Submitted to JASA — major revisions)

¹⁴Q. Jiang, S. Kurtek, and T. Needham. The weighted euler curve transform for shape and image analysis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pages 844–845, 2020.

¹⁵Kun Meng and Ani Eloyan. Population-level task-evoked functional connectivity via Fourier analysis. arXiv preprint arXiv: 2102.12039 (2022).

Thank You !